Answer:
The length of the steel beam is 1.058 m
Explanation:
coefficient of linear expansivity of Aluminum, [tex]\alpha _{AL}[/tex] = 25 x 10⁻⁶ ⁰C⁻¹
coefficient of linear expansivity of steel, [tex]\alpha _{st}[/tex] = 12 x 10⁻⁶ ⁰C⁻¹
Change in length of aluminum; ΔL[tex]_{AL}[/tex] = [tex]L_{Al}[/tex]*[tex]\alpha _{AL}[/tex]*ΔT
Change in length of steel; ΔL[tex]_{st}[/tex] = [tex]L{st_i}[/tex]*[tex]\alpha _{st}[/tex]*ΔT
difference in length of Aluminum and steel;
[tex]L_{st_i}[/tex]- [tex]L_{Al_i}[/tex] = 0.55 m, for this difference to remain constant, then ΔL[tex]_{AL}[/tex] = ΔL[tex]_{st}[/tex]
From the equation above, [tex]L_{st_i}[/tex] = 0.55 +[tex]L_{Al_i}[/tex]
Since, ΔL[tex]_{AL}[/tex] = ΔL[tex]_{st}[/tex], then [tex]L_{Al}[/tex]*[tex]\alpha _{AL}[/tex]*ΔT = [tex]L{st_i}[/tex]*[tex]\alpha _{st}[/tex]*ΔT
At constant temperature, the equation becomes;
[tex]L_{st_i}[/tex]*[tex]\alpha _{st}[/tex] = [tex]L_{Al}[/tex]*[tex]\alpha _{AL}[/tex]
Recall; [tex]L_{st_i} = 0.55 + L_{Al_i}[/tex]
[tex](0.55 +L_{Al_i})\alpha_{st} = L_{Al_i}\alpha _{Al}\\\\0.55\alpha_{st} + L_{Al_i}\alpha_{st} = L_{Al_i}\alpha _{Al}\\\\ L_{Ali}\alpha _{Al} - L_{Al_i}\alpha_{st} = 0.55\alpha_{st}\\\\L_{Al_i} (\alpha _{Al} -\alpha_{st}) = 0.55\alpha_{st}\\\\L_{Al_i} =\frac{0.55\alpha_{st}}{\alpha _{st} -\alpha_{Al}} = \frac{0.55X12X10^{-6}}{(25X10^{-6}) -(12X10^{-6})}\\\\L_{Al_i} = \frac{0.55X12X10^{-6}}{13X10^{-6}} =0.508 m[/tex]
To calculate the length of the steel beam;
[tex]L_{st_i} = 0.55 + L_{Al_i}[/tex]
[tex]L_{st_i} = 0.55 + 0.508 = 1.058 m[/tex]
Therefore, the length of the steel beam is 1.058 m