Answer:
The pH of the solution is 4.282
Explanation:
First we need to write the dissociation reaction
[tex]HCLO_{(aq)} + H_2O_{(l)[/tex] ⇄ [tex]CLO^-_{(aq)} +H_3O^+_{(aq)}[/tex]
Also, we need to prepare I C E table
[tex]HCLO_{(aq)} + H_2O_{(l)[/tex] ⇄ [tex]CLO^-_{(aq)} +H_3O^+_{(aq)}[/tex]
I 0.078 0 0
C - x +x +x
E 0.078 - x x x
Thus, pH= - Log[H₃O⁺]
The equilibrium concentration of H₃O⁺ = x
So, we solve for x
[tex]K_a = \frac{[CLO^-].[H_3O^+]}{[HCLO]} \\\\3.5X10^{-8} = \frac{[x].[x]}{[0.078-x]} \\\\3.5X10^{-8} =\frac{x^2}{0.078-x} \\\\x^2 = 3.5X10^{-8} (0.078-x)\\\\x^2 = 2.73X10^{-9} - (3.5X10^{-8})x\\\\x^2 + (3.5X10^{-8})x - 2.73X10^{-9} =0[/tex]
Solving this quadratic equation; x = 5.2232 x 10⁻⁵ M
pH = - Log[H₃O⁺]
pH = - Log[5.2232 x 10⁻⁵]
pH = 4.282 (in 3 decimal places)
Therefore, the pH of the solution is 4.282