Answer:
Step-by-step explanation:
a) P(K) = 0.7
b) P(R|K) = 1
c) P(K|R) = P(KnR) /P(R)
= P(K) x P(R|K) / ( P(K) x P(R|K) + P(K') P(R|K')
= 0.7 x 1 / ( 0.7 x 1 + (1-0.7) x 1/N)
= 0.7/(0.7 + 0.3/N)
d) P(K|R) > 0.99
0.7/(0.7 + 0.3/N) > 0.99
N > 42.86
N = 43 will be the value of N that will ensure that P(K|R) >99%