Respuesta :
Answer:
a) [tex] P(X>2)= 1-P(X \leq 2) = 1-[P(X=0)+P(X=1)+P(X=2)][/tex]
And we can find the individual probabilities like this:
[tex] P(X=0) = \frac{e^{-0.8} 0.8^0}{0!}= 0.4493[/tex]
[tex] P(X=1) = \frac{e^{-0.8} 0.8^1}{1!}= 0.3595[/tex]
[tex] P(X=2) = \frac{e^{-0.8} 0.8^2}{2!}= 0.1438[/tex]
And replacing we got:
[tex] P(X>2)= 1-P(X \leq 2) = 1-[0.4493+0.3595+0.1438]=0.0474 [/tex]
b) [tex] P(X=1) = \frac{e^{-0.8} 0.8^1}{1!}= 0.3595[/tex]
Step-by-step explanation:
Let X the random variable that represent the number of hurricanes hitting the coast of Florida annualle. We know that [tex]X \sim Poisson(\lambda=0.8)[/tex]
The probability mass function for the random variable is given by:
[tex]f(x)=\frac{e^{-\lambda} \lambda^x}{x!} , x=0,1,2,3,4,...[/tex]
And f(x)=0 for other case.
For this distribution the expected value is the same parameter [tex]\lambda=0.8[/tex]
[tex]E(X)=\mu =\lambda=0.8[/tex]
Part a
For this case we want this probability: [tex] P(X>2)[/tex]
And for this case we can use the complement rule like this:
[tex] P(X>2)= 1-P(X \leq 2) = 1-[P(X=0)+P(X=1)+P(X=2)][/tex]
And we can find the individual probabilities like this:
[tex] P(X=0) = \frac{e^{-0.8} 0.8^0}{0!}= 0.4493[/tex]
[tex] P(X=1) = \frac{e^{-0.8} 0.8^1}{1!}= 0.3595[/tex]
[tex] P(X=2) = \frac{e^{-0.8} 0.8^2}{2!}= 0.1438[/tex]
And replacing we got:
[tex] P(X>2)= 1-P(X \leq 2) = 1-[0.4493+0.3595+0.1438]=0.0474 [/tex]
Part b
Using the probability mass function we have:
[tex] P(X=1) = \frac{e^{-0.8} 0.8^1}{1!}= 0.3595[/tex]