The number of hurricanes hitting the coast of Florida annually has a Poisson distribution with a mean of 0.8. Answer the following two questions: a) What is the probability that more than two hurricanes will hit the Florida coast in a year? b) What is the probability that exactly one hurricane will hit the coast of Florida in a year?

Respuesta :

Answer:

a) [tex] P(X>2)= 1-P(X \leq 2) = 1-[P(X=0)+P(X=1)+P(X=2)][/tex]

And we can find the individual probabilities like this:

[tex] P(X=0) = \frac{e^{-0.8} 0.8^0}{0!}= 0.4493[/tex]

[tex] P(X=1) = \frac{e^{-0.8} 0.8^1}{1!}= 0.3595[/tex]

[tex] P(X=2) = \frac{e^{-0.8} 0.8^2}{2!}= 0.1438[/tex]

And replacing we got:

[tex] P(X>2)= 1-P(X \leq 2) = 1-[0.4493+0.3595+0.1438]=0.0474 [/tex]

b) [tex] P(X=1) = \frac{e^{-0.8} 0.8^1}{1!}= 0.3595[/tex]

Step-by-step explanation:

Let X the random variable that represent the number of hurricanes hitting the coast of Florida annualle. We know that [tex]X \sim Poisson(\lambda=0.8)[/tex]

The probability mass function for the random variable is given by:

[tex]f(x)=\frac{e^{-\lambda} \lambda^x}{x!} , x=0,1,2,3,4,...[/tex]

And f(x)=0 for other case.

For this distribution the expected value is the same parameter [tex]\lambda=0.8[/tex]

[tex]E(X)=\mu =\lambda=0.8[/tex]

Part a

For this case we want this probability: [tex] P(X>2)[/tex]

And for this case we can use the complement rule like this:

[tex] P(X>2)= 1-P(X \leq 2) = 1-[P(X=0)+P(X=1)+P(X=2)][/tex]

And we can find the individual probabilities like this:

[tex] P(X=0) = \frac{e^{-0.8} 0.8^0}{0!}= 0.4493[/tex]

[tex] P(X=1) = \frac{e^{-0.8} 0.8^1}{1!}= 0.3595[/tex]

[tex] P(X=2) = \frac{e^{-0.8} 0.8^2}{2!}= 0.1438[/tex]

And replacing we got:

[tex] P(X>2)= 1-P(X \leq 2) = 1-[0.4493+0.3595+0.1438]=0.0474 [/tex]

Part b

Using the probability mass function we have:

[tex] P(X=1) = \frac{e^{-0.8} 0.8^1}{1!}= 0.3595[/tex]

ACCESS MORE