A metallic wire has a diameter of 4.12mm. When the current in the wire is 8.00A, the drift velocity is 5.40×10−5m/s.What is the density of free electrons in the metal?Express your answer numerically in m−3 to two significant figures.

Respuesta :

Answer:

[tex]6.9\times 10^{28}m^{-3}[/tex]

Explanation:

We are given that

Diameter of wire=d=4.12 mm

Radius of wire=r[tex]r=\frac{d}{2}=\frac{4.12}{2}=2.06mm=2.06\times 10^{-3} m[/tex]

[tex]1mm=10^{-3} m[/tex]

Current=I=8 A

Drift velocity=[tex]v_d=5.4\times 10^{-5} m/s[/tex]

We have to find the density of free electrons in the metal

We know that

Density of electron=[tex]n=\frac{I}{v_deA}[/tex]

Using the formula

Density of free electrons=[tex]\frac{8}{5.4\times 10^{-5}\times 1.6\times 10^{-19}\times 3.14\times (2.06\times 10^{-3})^2}[/tex]

By using Area of wire=[tex]\pi r^2[/tex]

[tex]\pi=3.14\\e=1.6\times 10^{-19} C[/tex]

Density of free electrons=[tex]6.9\times 10^{28}m^{-3}[/tex]

Explanation:

We will calculate the density as follows.

               n = [tex]\frac{i}{v_{d}eA}[/tex]

As the metallic wire is in the shape of a circle. So, its area will be calculated as follows.

                 Area = [tex]\pi \times r^{2}[/tex]

                          = [tex]3.14 \times (2.06 \times 10^{-3})^{2}[/tex]

                [tex]v_{d}[/tex] = [tex]5.40 \times 10^{-5}[/tex]

                        i = 8 A

Hence, we will calculate the density of free electrons as follows.

              n = [tex]\frac{i}{v_{d}eA}[/tex]

                 = [tex]\frac{8}{5.40 \times 10^{-5} \times 3.14 \times (2.06 \times 10^{-3})^{2} \times 1.60 \times 10^{-19}}[/tex]

                  = [tex]6.950 \times 10^{28} m^{-3}[/tex]

Thus, we can conclude that the density of free electrons in the metal is [tex]6.950 \times 10^{28} m^{-3}[/tex].

ACCESS MORE