Respuesta :
Answer:
(a) [tex]cos\theta = \sqrt{1-sin^2\theta}[/tex]
(b) [tex]cos\theta = \frac{4}{5}[/tex]
(c) [tex]cos\theta = -\frac{4}{5}[/tex]
Step-by-step explanation:
Given that 90°< θ<180° and [tex]sin\theta= \frac{3}{5}[/tex]
Since 90°< θ<180° so θ lies in second quadrant where sinθ is positive but cosθ is negative.
(a) The identity,
Sin²θ+cos²θ= 1
⇒cos²θ=1-sin²θ
[tex]\Rightarrow cos\theta = \sqrt{1-sin^2\theta}[/tex]
(b)
[tex]cos\theta = \sqrt{1-sin^2\theta}[/tex] [ Since the quadrant is not considered]
[tex]\Rightarrow cos\theta = \sqrt{1-(\frac{3}{5})^2 }[/tex]
[tex]\Rightarrow cos\theta = \sqrt{1-(\frac{9}{25}) }[/tex]
[tex]\Rightarrow cos\theta = \sqrt{(\frac{25-9}{25}) }[/tex]
[tex]\Rightarrow cos\theta = \sqrt{\frac{16}{25} }[/tex]
[tex]\Rightarrow cos\theta = \frac{4}{5}[/tex]
(c)
[tex]cos\theta = -\sqrt{1-sin^2\theta}[/tex] [ since cos θ is negative in second quadrant]
[tex]\Rightarrow cos\theta = -\sqrt{1-(\frac{3}{5})^2 }[/tex]
[tex]\Rightarrow cos\theta = -\sqrt{1-(\frac{9}{25}) }[/tex]
[tex]\Rightarrow cos\theta = -\frac{4}{5}[/tex]