Yes, The expression [tex]\frac{1}{8} -10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8} x[/tex] is equivalent to [tex]-\frac{1}{8} (59-35x)[/tex]
Explanation:
The given expression is [tex]\frac{1}{8} -10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8} x[/tex]
Solving, we get,
[tex]\frac{1}{8} -\frac{30}{4}+\frac{30}{8}x+\frac{5}{8} x[/tex]
Adding the similar terms, we have,
[tex](\frac{1}{8} -\frac{30}{4})+(\frac{30}{8}x+\frac{5}{8} x)\\[/tex]
[tex]\frac{1-60}{8} +\frac{35}{8}x[/tex]
Adding, we get,
[tex]-\frac{59}{8} +\frac{35}{8}x[/tex]
Taking out the common term [tex]-\frac{1}{8}[/tex] , we have,
[tex]-\frac{1}{8} (59-35x)[/tex]
Thus, the expression [tex]\frac{1}{8} -10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8} x[/tex] is equivalent to [tex]-\frac{1}{8} (59-35x)[/tex]