Respuesta :
Answer:
[tex] \pi =\frac{C}{2r}[/tex]
And replacing we got:
[tex]\pi = \frac{10 cm}{2*r}[/tex]
Since we know that [tex] D = 2r[/tex] and [tex] r = \frac{D}{2}[/tex]
If we replace we got:
[tex] \pi = \frac{10 cm}{2 *\frac{D}{2}} = \frac{10}{D}[/tex]
Step-by-step explanation:
For this case we know the the circumference of the circle is 10 cm, and the formula for the circumference is given by:
[tex] C= 2\pi r[/tex]
r = 10 cm
And if we solve for [tex]\pi[/tex] we can divide both sides by 2r we got:
[tex] \pi =\frac{C}{2r}[/tex]
And replacing we got:
[tex]\pi = \frac{10 cm}{2*r}[/tex]
Since we know that [tex] D = 2r[/tex] and [tex] r = \frac{D}{2}[/tex]
If we replace we got:
[tex] \pi = \frac{10 cm}{2 *\frac{D}{2}} = \frac{10}{D}[/tex]