When 9.2 g of frozen N2O4 is added to a 0.50 L reaction vessel and the vessel is heated to 400 K and allowed to come to equilibrium, the concentration of N2O4 is determined to be 0.057 M. Given this information, what is the value of Kc for the reaction below at
400 K? N2O4(g) ⇌ 2 NO2(g)

Respuesta :

Answer: The value of [tex]K_c[/tex] for the given reaction is 1.435

Explanation:

To calculate the molarity of solution, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Volume of solution (in L)}}[/tex]

Given mass of [tex]N_2O_4[/tex] = 9.2 g

Molar mass of [tex]N_2O_4[/tex] = 92 g/mol

Volume of solution = 0.50 L

Putting values in above equation, we get:

[tex]\text{Molarity of solution}=\frac{9.2g}{92g/mol\times 0.50L}\\\\\text{Molarity of solution}=0.20M[/tex]

For the given chemical equation:

                 [tex]N_2O_4(g)\rightleftharpoons 2NO_2(g)[/tex]

Initial:          0.20

At eqllm:     0.20-x        2x

We are given:

Equilibrium concentration of [tex]N_2O_4[/tex] = 0.057

Evaluating the value of 'x'

[tex]\Rightarrow (0.20-x)=0.057\\\\\Rightarrow x=0.143[/tex]

The expression of [tex]K_c[/tex] for above equation follows:

[tex]K_c=\frac{[NO_2]^2}{[N_2O_4]}[/tex]

[tex][NO_2]_{eq}=2x=(2\times 0.143)=0.286M[/tex]

[tex][N_2O_4]_{eq}=0.057M[/tex]

Putting values in above expression, we get:

[tex]K_c=\frac{(0.286)^2}{0.143}\\\\K_c=1.435[/tex]

Hence, the value of [tex]K_c[/tex] for the given reaction is 1.435

ACCESS MORE