Answer: The value of [tex]K_c[/tex] for the given reaction is 1.435
Explanation:
To calculate the molarity of solution, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Volume of solution (in L)}}[/tex]
Given mass of [tex]N_2O_4[/tex] = 9.2 g
Molar mass of [tex]N_2O_4[/tex] = 92 g/mol
Volume of solution = 0.50 L
Putting values in above equation, we get:
[tex]\text{Molarity of solution}=\frac{9.2g}{92g/mol\times 0.50L}\\\\\text{Molarity of solution}=0.20M[/tex]
For the given chemical equation:
[tex]N_2O_4(g)\rightleftharpoons 2NO_2(g)[/tex]
Initial: 0.20
At eqllm: 0.20-x 2x
We are given:
Equilibrium concentration of [tex]N_2O_4[/tex] = 0.057
Evaluating the value of 'x'
[tex]\Rightarrow (0.20-x)=0.057\\\\\Rightarrow x=0.143[/tex]
The expression of [tex]K_c[/tex] for above equation follows:
[tex]K_c=\frac{[NO_2]^2}{[N_2O_4]}[/tex]
[tex][NO_2]_{eq}=2x=(2\times 0.143)=0.286M[/tex]
[tex][N_2O_4]_{eq}=0.057M[/tex]
Putting values in above expression, we get:
[tex]K_c=\frac{(0.286)^2}{0.143}\\\\K_c=1.435[/tex]
Hence, the value of [tex]K_c[/tex] for the given reaction is 1.435