Answer:
[tex]f(x) = (x - 8)^2 - 1[/tex].
Step-by-step explanation:
A quadratic function is a function that can be written in the form
[tex]f(x)=a(x-h)^2+k[/tex]
where [tex]a\neq 0[/tex].
The number inside the parenthesis ([tex]h[/tex]) makes the graph shift to the left when [tex]h < 0[/tex] or right when [tex]h > 0[/tex].
The number [tex]k[/tex] makes the graph shift down when [tex]k < 0[/tex] or up when [tex]k > 0[/tex].
We know that the quadratic function shifted eight units to the right and one unit down.
Therefore,
[tex]h=8\\k=-1[/tex]
and the function is [tex]f(x) = (x - 8)^2 - 1[/tex].