Choose the function that shows the correct transformation of the quadratic function shifted eight units to the right and one unit down.1. ƒ(x) = (x - 8)² - 12. ƒ(x) = (x - 8)² + 13. ƒ(x) = (x + 8)² - 14. ƒ(x) = (x + 8)² + 1

Respuesta :

Answer:

[tex]f(x) = (x - 8)^2 - 1[/tex].

Step-by-step explanation:

A quadratic function is a function that can be written in the form

[tex]f(x)=a(x-h)^2+k[/tex]

where [tex]a\neq 0[/tex].

The number inside the parenthesis ([tex]h[/tex]) makes the graph shift to the left when [tex]h < 0[/tex] or right when [tex]h > 0[/tex].

The number [tex]k[/tex] makes the graph shift down when [tex]k < 0[/tex] or up when [tex]k > 0[/tex].

We know that the quadratic function shifted eight units to the right and one unit down.

Therefore,

[tex]h=8\\k=-1[/tex]

and the function is [tex]f(x) = (x - 8)^2 - 1[/tex].