Respuesta :
Answer:
(a). The amount of current that flows through this portion of the membrane is [tex]2.70\times10^{-12}\ A[/tex]
(b). The factor of the current is increase by factor of 2.
(1) is correct option
Explanation:
Given that,
Thickness = 7.50 nm
Area [tex]A=(1.3\times1.3\times10^{-6})^2[/tex]
Potential difference = 92.2 mV
Resistivity of the material [tex]\rho=1.30\times10^{7}\ \ohm[/tex]
We need to calculate the resistance
Using formula of resistivity
[tex]R=\dfrac{\rho l}{A}[/tex]
Put the value into the formula
[tex]R=\dfrac{1.30\times10^{7}\times7.50\times10^{-9}}{(1.3\times1.3\times10^{-6})^2}[/tex]
[tex]R=3.413\times10^{10}\ \Omega[/tex]
(a). We need to calculate the amount of current that flows through this portion of the membrane
Using Ohm's law
[tex]V=IR[/tex]
[tex]I=\dfrac{V}{R}[/tex]
Put the value into the formula
[tex]I=\dfrac{92.2\times10^{-3}}{3.413\times10^{10}}[/tex]
[tex]I=2.70\times10^{-12}\ A[/tex]
The amount of current that flows through this portion of the membrane is [tex]2.70\times10^{-12}\ A[/tex]
(b). If the side dimensions of the membrane portion is halved
We need to calculate the new resistance
Using formula of resistivity
[tex]R'=\dfrac{\rho \dfrac{l}{2}}{A}[/tex]
Put the value into the formula
[tex]R'=\dfrac{1.30\times10^{7}\times\dfrac{7.50\times10^{-9}}{2}}{(1.3\times1.3\times10^{-6})^2}[/tex]
[tex]R'=1.706\times10^{10}\ \Omega[/tex]
We need to calculate the new current
Using Ohm's law
[tex]V=I'R'[/tex]
[tex]I'=\dfrac{V}{R'}[/tex]
Put the value into the formula
[tex]I'=\dfrac{92.2\times10^{-3}}{1.706\times10^{10}}[/tex]
[tex]I'=5.404\times10^{-12}\ A[/tex]
We need to calculate the factor
[tex]\dfrac{I'}{I}=\dfrac{5.404\times10^{-12}}{2.70\times10^{-12}}[/tex]
[tex]I'=2I[/tex]
The factor of the current is increase by factor of 2.
Hence,(a). The amount of current that flows through this portion of the membrane is [tex]2.70\times10^{-12}\ A[/tex]
(b). The factor of the current is increase by factor of 2.
