Respuesta :
Answer:
Potential energy of reactants in an endothermic reaction is lower than the potential energy of products because in endothermic reaction system absorb energy from  environment. We can see that in the lower temperature of environment after completed reaction.
Explanation:
The potential energy of products is less than the potential energy of the reactants.
Exothermic reactions are defined as the reactions which release heat. The release in heat is due to the difference in the potential energy of the reactants and the products.
- For these reactions, the potential energy of the products is less than the potential energy of the reactants. The total enthalpy change of the reaction is given by the equation:
[tex]$\Delta H_{r x n}=\sum H_{\text {products }}-\sum H_{\text {reactants }}$[/tex]
An exothermic reaction [tex]$\Delta H_{r x n}$[/tex] is negative.
For the reaction of baking soda and vinegar, the equation follows:
[tex]$\mathrm{NaHCO}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+$[/tex]
As the energy is written at the product side, this means that the reaction between baking soda and vinegar is an exothermic reaction.
Learn more about endothermic reaction
https://brainly.com/question/8992943
#SPJ2