Respuesta :

x = 37.5 (or) [tex]\frac{75}{2}[/tex]

Solution:

Given [tex]\triangle A B C \sim \triangle D B E[/tex].

Let us take BE = x and BC = 25 + x.

To determine the value of x:

If two triangles are similar then the corresponding angles are congruent and the corresponding sides are in proportion.

[tex]$\frac{AC}{DE}=\frac{B C}{B E}[/tex]

[tex]$\frac{50}{30} =\frac{25+x}{x}[/tex]

Do cross multiplication, we get

[tex]50x=30(25+x)[/tex]

[tex]50x=750+30x[/tex]

Subtract 30x from both sides of the equation.

[tex]20 x=750[/tex]

Divide by 20 on both sides of the equation, we get

x = 37.5 (or) [tex]\frac{75}{2}[/tex]

Hence the value of x is 37.5 or [tex]\frac{75}{2}[/tex].