Respuesta :

Answer:

[tex]x\cdot y=8[/tex]

Step-by-step explanation:

Exponential Equations

They can be solved by normal algebraic techniques, provided both sides of the equations are powers of the same base.

[tex]log_{5\sqrt{5}}125=x[/tex]

The log properties state that:

[tex]log_xy=z=>x^z=y[/tex]

Applying to the given equation

[tex](5\sqrt{5})^x=125[/tex]

Transforming both sides as a power of 5:

[tex]\displaystyle 5^{\frac{3}{2}x}=5^3[/tex]

Simplifying

[tex]\displaystyle \frac{3}{2}x=3[/tex]

Solving for x

[tex]x=2[/tex]

Now for the second equation

[tex]log_{2\sqrt{2}}64=y[/tex]

Applying the log property

[tex](2\sqrt{2})^y=64[/tex]

[tex]\displaystyle 2^{\frac{3}{2}y}=2^6[/tex]

Simplifying

[tex]\displaystyle \frac{3}{2}y=6[/tex]

Solving for y:

[tex]y=4[/tex]

The product of x and y is

[tex]xy=(2)(4)=8[/tex]

ACCESS MORE