Find all points of intersection of the given curves. (Assume 0 ≤ θ ≤ 2π and r ≥ 0. Order your answers from smallest to largest θ. If an intersection occurs at the pole, enter POLE in the first answer blank.) r = 8 sin(2θ), r = 4

Respuesta :

Answer:

∅1=15°,∅2=75°,∅3=105°,∅4=165°,∅5=195°,∅6=255°,∅7=285°,

∅8=345°

Step-by-step explanation:

Data

r = 8 sin(2θ), r = 4 and r=4

iqualiting; 8.sin(2∅)=4; sin(2∅)=1/2, 2∅=asin(1/2), 2∅=30°, ∅=15°

according the graph 2, the cut points are:

I quadrant:

0+15° = 15°

90°-15°=75°

II quadrant:

90°+15°=105°

180°-15°=165°

III quadrant:

180°+15°=195°

270°-15°=255°

IV quadrant:

270°+15°=285°

360°-15°=345°

No intersection whit the pole (0)

Ver imagen prozehus
Ver imagen prozehus
ACCESS MORE