Respuesta :
Answer:
a) We can use the following excel code to find it:"=NORM.DIST(-2.34,0,1,TRUE)"
[tex] P(Z \leq -2.34)=0.0096[/tex]
b) [tex] P(Z \geq -2.34)= 1-P(X \leq -2.34)= 1-0.0096=0.9904[/tex]
c) We can use the following excel code: "=1-NORM.DIST(1.74,0,1,TRUE)"
[tex] P(Z > 1.74)= 1-P(X \leq 1.74)=0.0409[/tex]
d) We can use the following excel code: "=NORM.DIST(1.74,0,1,TRUE)-NORM.DIST(-2.34,0,1,TRUE)"
[tex] P(-2.34<Z < 1.74)= P(Z<1.74)-P(Z<-2.34)=0.959-0.0096=0.949[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
We want to find this probability:
[tex] P(Z \leq -2.34)[/tex]
And we can use the following excel code to find it:"=NORM.DIST(-2.34,0,1,TRUE)"
[tex] P(Z \leq -2.34)=0.0096[/tex]
Part b
We want to find this probability:
[tex] P(Z \geq -2.34)[/tex]
And for this case we can use the complement rule:
[tex] P(Z \geq -2.34)= 1-P(X \leq -2.34)[/tex]
And using the result from part a we got:
[tex] P(Z \geq -2.34)= 1-P(X \leq -2.34)= 1-0.0096=0.9904[/tex]
Part c
We want to find this probability:
[tex] P(Z > 1.74)[/tex]
And for this case we can use the complement rule:
[tex] P(Z > 1.74)= 1-P(X \leq 1.74)[/tex]
And we can use the following excel code: "=1-NORM.DIST(1.74,0,1,TRUE)"
[tex] P(Z > 1.74)= 1-P(X \leq 1.74)=0.0409[/tex]
Part d
We want to find this probability:
[tex] P(-2.34<Z <1.74)[/tex]
And for this case we can find this probability with this difference:
[tex] P(-2.34<Z < 1.74)= P(Z<1.74)-P(Z<-2.34)[/tex]
And we can use the following excel code: "=NORM.DIST(1.74,0,1,TRUE)-NORM.DIST(-2.34,0,1,TRUE)"
[tex] P(-2.34<Z < 1.74)= P(Z<1.74)-P(Z<-2.34)=0.959-0.0096=0.949[/tex]