On a coordinate plane, a line is drawn from point A to point B. Point A is at (9, negative 8) and point B is at (negative 6, 7).
What are the x- and y- coordinates of point P on the directed line segment from A to B such that P is Two-thirds the length of the line segment from A to B?

x = (StartFraction m Over m + n EndFraction) (x 2 minus x 1) + x 1

y = (StartFraction m Over m + n EndFraction) (y 2 minus y 1) + y 1

(2, –1)
(4, –3)
(–1, 2)
(3, –2)

Respuesta :

Option D: [tex]$(3,-2)$[/tex] is the coordinates of the point P

Explanation:

The coordinate of point A is [tex](9,-8)[/tex]

The coordinate of point B is [tex](-6,7)[/tex]

The length of the point P is [tex]\frac{2}{3}[/tex] of the line segment from A to B.

The coordinates of the point P can be determined using the formula,

[tex]x=\frac{m}{m+n} (x_2-x_1)+x_1[/tex]  and  [tex]y=\frac{m}{m+n} (y_2-y_1)+y_1[/tex]

where [tex]m=2,n=3[/tex].

Substituting the values, we have,

[tex]x=\frac{m}{m+n} (x_2-x_1)+x_1[/tex]

[tex]x=\frac{2}{2+3} (-6-9)+9[/tex]

[tex]x=\frac{2}{5} (-15)+9[/tex]

[tex]x=-6+9[/tex]

[tex]x=3[/tex]

Similarly, substituting the values for y, we get,

[tex]y=\frac{m}{m+n} (y_2-y_1)+y_1[/tex]

[tex]y=\frac{2}{2+3} (7+8)-8[/tex]

[tex]y=\frac{2}{5} (15)-8[/tex]

[tex]y=6-8[/tex]

[tex]y=-2[/tex]

Thus, the coordinates of the point P is [tex]$(3,-2)$[/tex]

Hence, Option D is the correct answer.

Answer:

c

Step-by-step explanation:

edge

ACCESS MORE