Respuesta :
Option D: [tex]$(3,-2)$[/tex] is the coordinates of the point P
Explanation:
The coordinate of point A is [tex](9,-8)[/tex]
The coordinate of point B is [tex](-6,7)[/tex]
The length of the point P is [tex]\frac{2}{3}[/tex] of the line segment from A to B.
The coordinates of the point P can be determined using the formula,
[tex]x=\frac{m}{m+n} (x_2-x_1)+x_1[/tex] and [tex]y=\frac{m}{m+n} (y_2-y_1)+y_1[/tex]
where [tex]m=2,n=3[/tex].
Substituting the values, we have,
[tex]x=\frac{m}{m+n} (x_2-x_1)+x_1[/tex]
[tex]x=\frac{2}{2+3} (-6-9)+9[/tex]
[tex]x=\frac{2}{5} (-15)+9[/tex]
[tex]x=-6+9[/tex]
[tex]x=3[/tex]
Similarly, substituting the values for y, we get,
[tex]y=\frac{m}{m+n} (y_2-y_1)+y_1[/tex]
[tex]y=\frac{2}{2+3} (7+8)-8[/tex]
[tex]y=\frac{2}{5} (15)-8[/tex]
[tex]y=6-8[/tex]
[tex]y=-2[/tex]
Thus, the coordinates of the point P is [tex]$(3,-2)$[/tex]
Hence, Option D is the correct answer.