Answer:
Correct option is (a). 26.514
Step-by-step explanation:
The formula to compute the slope of regression line from raw data is:
[tex]Slope=\frac{n\sum XY-\sum X\sum Y}{n\sum X^{2}-(\sum X)^{2}}[/tex]
Compute the values of ∑ XY, ∑ X , ∑ Y and ∑ X² as shown in the table.
The values are:
[tex]\sum X=11991\\\sum Y =1222\\\sum X^{2}=23964031\\\sum XY = 2442631[/tex]
Compute the slope of the best fitting line as follows:
[tex]Slope=\frac{n\sum XY-\sum X\sum Y}{n\sum X^{2}-(\sum X)^{2}}\\=\frac{(6\times2442631)-(11991\times1222)}{(6\times23964031)-(11991)^{2}} \\=26.51428\\\approx26.514[/tex]
Thus, the slope of the best fitting line is 26.514.
The correct option is (a).