Answer:
The electric flux through the cylinder due to this infinite line of charge is [tex]0.319209\times10^{6}\ Nm^2/C[/tex]
Explanation:
Given that,
The electric field [tex]E=\dfrac{\lambda}{2\pi\epsilon_{0}r}[/tex]
Radius = 0.155 mm
length = 0.500 mm
Charge per unit length [tex]\lambda=5.65\times10^{-6}\ C/m[/tex]
We need to calculate the electric flux
Using formula of electric flux
[tex]\phi=EA\cos\theta[/tex]
Here, [tex]\theta=90^{\circ}[/tex]
Put the value of E and A
[tex]\phi=\dfrac{\lambda}{2\pi\epsilon_{0}r}\times(2\pi\times r\times l)[/tex]
[tex]\phi=\dfrac{\lambda\times l}{\epsilon_{0}}[/tex]
Put the value into the formula
[tex]\phi=\dfrac{5.65\times10^{-6}\times0.500}{8.85\times10^{-12}}[/tex]
[tex]\phi=0.319209\times10^{6}\ Nm^2/C[/tex]
Hence, The electric flux through the cylinder due to this infinite line of charge is [tex]0.319209\times10^{6}\ Nm^2/C[/tex]