The textbook that the electric field due to an infinite line of charge is perpendicular to the line and has magnitude E=λ/2πϵ0rE=λ/2πϵ0r. Consider an imaginary cylinder with a radius of r = 0.155 mm and a length of l = 0.500 mm that has an infinite line of positive charge running along its axis. The charge per unit length on the line is λλlambda = 5.65 μC/mμC/m . What is the electric flux through the cylinder due to this infinite line of charge?

Respuesta :

Answer:

The electric flux through the cylinder due to this infinite line of charge is [tex]0.319209\times10^{6}\ Nm^2/C[/tex]

Explanation:

Given that,

The electric field [tex]E=\dfrac{\lambda}{2\pi\epsilon_{0}r}[/tex]

Radius = 0.155 mm

length = 0.500 mm

Charge per unit length [tex]\lambda=5.65\times10^{-6}\ C/m[/tex]

We need to calculate the electric flux

Using formula of electric flux

[tex]\phi=EA\cos\theta[/tex]

Here, [tex]\theta=90^{\circ}[/tex]

Put the value of E and A

[tex]\phi=\dfrac{\lambda}{2\pi\epsilon_{0}r}\times(2\pi\times r\times l)[/tex]

[tex]\phi=\dfrac{\lambda\times l}{\epsilon_{0}}[/tex]

Put the value into the formula

[tex]\phi=\dfrac{5.65\times10^{-6}\times0.500}{8.85\times10^{-12}}[/tex]

[tex]\phi=0.319209\times10^{6}\ Nm^2/C[/tex]

Hence, The electric flux through the cylinder due to this infinite line of charge is [tex]0.319209\times10^{6}\ Nm^2/C[/tex]

ACCESS MORE