Respuesta :
Answer:
Part 1) Is a exponential growth function
Part 2) [tex]A=5,000(e)^{0.10t}[/tex] or [tex]A=5,000(1.1052)^{t}[/tex]
Part 3) [tex]\$6,107.01[/tex]
Part 4) [tex]\$13,591.41[/tex]
Step-by-step explanation:
Part 1) What type of exponential model is Natalie’s situation?
What type of exponential model is Natalie’s situation?
we know that
The formula to calculate continuously compounded interest is equal to
[tex]A=P(e)^{rt}[/tex]
where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest in decimal
t is Number of Time Periods
e is the mathematical constant number
we have
[tex]P=\$5,000\\r=10\%=0.10[/tex]
substitute in the formula above
[tex]A=5,000(e)^{0.10t}[/tex]
Applying property of exponents
[tex]A=5,000(1.1052)^{t}[/tex]
therefore
Is a exponential growth function, because the base is greater than 1
Part 2) Write the model equation for Natalie’s situation
[tex]A=5,000(e)^{0.10t}[/tex] or [tex]A=5,000(1.1052)^{t}[/tex]
see Part 1)
Part 3) How much money will Natalie have after 2 years?
For t=2 years
substitute
[tex]A=5,000(e)^{0.10*2}=\$6,107.01[/tex]
Part 4) How much money will Natalie have after 10 years?
For t=10 years
substitute
[tex]A=5,000(e)^{0.10*10}=\$13,591.41[/tex]