Answer:
[tex]P = Ke^{(ln Pr^{c}-t) }[/tex]
Step-by-step explanation:
The differential equation is modeled as follows:
P = r (C-P)
then
[tex]\frac{dP}{dt} = r(C-P)[/tex]
arranging gives:
[tex]dP = Cr - Pr[/tex]
Arranging the equation gives:
[tex]\frac{dP}{P} = \frac{C}{P}r - 1[/tex]
solving:
[tex]P = e^{(lnPr^{c} -t)} K\\P = Ke^{(lnPr^{c} -t) }[/tex]