Answer:
[tex]\frac{F_g}{F_e}=8.08\times 10^{-37}[/tex]
Explanation:
We are given that
[tex]k=8.99\times 10^9 Nm^2/C^2[/tex]
Charge on proton=[tex]q=1.6\times 10^{-19} C[/tex]
[tex]G=6.67\times 10^{-11} Nm^2/Kg^2[/tex]
Mass of one proton=[tex]m=1.67\times 10^{-27} Kg[/tex]
The distance between two protons=d
Gravitational attraction force=[tex]F_g=\frac{Gm_1m_2}{d^2}[/tex]
Using the formula
Gravitational attraction force between two protons=[tex]F_g=\frac{6.67\times 10^{-11}\times (1.67\times 10^{-27})^2}{d^2}[/tex]..(1)
Electric force =[tex]F_e=\frac{kq_1q_2}{d^2}[/tex]
Electric repulsive force between two protons=[tex]F_e=\frac{8.99\times 10^9\times (1.6\times 10^{-19})^2}{d^2}[/tex]
[tex]\frac{F_g}{F_e}=\frac{\frac{6.67\times 10^{-11}\times (1.67\times 10^{-27})^2}{d^2}}{\frac{8.99\times 10^9\times (1.6\times 10^{-19})^2}{d^2}}[/tex]
[tex]\frac{F_g}{F_e}=\frac{6.67\times (1.67\times 10^{-27})^2}{8.99\times 10^9\times (1.6\times 10^{-19})^2}[/tex]
[tex]\frac{F_g}{F_e}=8.08\times 10^{-37}[/tex]