Respuesta :
Answer:
90% confidence interval for the gestation period for all of Dr. Smith's patients = [250.48 , 267.12] .
Step-by-step explanation:
We are given that the length of human pregnancies is approximately normally distributed with Mean, [tex]\mu[/tex] = 266 days and standard deviation, [tex]\sigma[/tex] = 16 days.
Let suppose, Z = [tex]\frac{Xbar - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] follows N(0,1)
where, [tex]Xbar[/tex] = Sample mean = [tex]\frac{279 +260 +261 +266+ 255+ 267+ 230+ 266+ 264+ 240}{10}[/tex]
= 258.8
n = sample size = 10
So, the 90% confidence interval for [tex]\mu[/tex] is given by ;
P(-1.6449 < N(0,1) < 1.6449) = 0.90 {because at 10% level of significance z
table gives critical value of 1.6449}
P(-1.6449 < [tex]\frac{Xbar - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.6449) = 0.90
P(-1.6449*[tex]\frac{\sigma}{\sqrt{n} }[/tex] < [tex]Xbar - \mu[/tex] < 1.6449*[tex]\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.90
P([tex]Xbar - 1.6449*\frac{\sigma}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]Xbar + 1.6449*\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.90
So, 90% confidence interval for [tex]\mu[/tex] = [tex][Xbar - 1.6449*\frac{\sigma}{\sqrt{n} } , Xbar + 1.6449*\frac{\sigma}{\sqrt{n} }][/tex]
= [tex][258.8 - 1.6449*\frac{16}{\sqrt{10} } , 258.8 + 1.6449*\frac{16}{\sqrt{10} }][/tex]
= [250.48 , 267.12]
Since, 266 lies inside this interval so we conclude that the mean gestation period for all of Dr. Smith's patients is 266 days.
And this interval states that we have 90% confidence in the above statement.