The length of human pregnancies is approximately normally distributed with mean 266 days and standard deviation 16 days. Dr. Smith obtains a simple random sample of 10 of her patients and obtains the following results:
279 260 261 266 255 267 230 266 264 240
Construct a 90% confidence interval for the gestation period for all of Dr. Smith's patients. Interpret this interval. .

Respuesta :

Answer:

90% confidence interval for the gestation period for all of Dr. Smith's patients = [250.48 , 267.12] .

Step-by-step explanation:

We are given that the length of human pregnancies is approximately normally distributed with Mean, [tex]\mu[/tex] = 266 days and  standard deviation, [tex]\sigma[/tex] = 16 days.

Let suppose, Z = [tex]\frac{Xbar - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] follows N(0,1)

    where, [tex]Xbar[/tex] = Sample mean = [tex]\frac{279 +260 +261 +266+ 255+ 267+ 230+ 266+ 264+ 240}{10}[/tex]

                                                     = 258.8

                  n = sample size = 10

So, the 90% confidence interval for [tex]\mu[/tex] is given by ;

 P(-1.6449 < N(0,1) < 1.6449) = 0.90 {because at 10% level of significance z

                                                                table gives critical value of 1.6449}

P(-1.6449 < [tex]\frac{Xbar - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.6449) = 0.90

P(-1.6449*[tex]\frac{\sigma}{\sqrt{n} }[/tex] < [tex]Xbar - \mu[/tex] < 1.6449*[tex]\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.90

P([tex]Xbar - 1.6449*\frac{\sigma}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]Xbar + 1.6449*\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.90

So, 90% confidence interval for [tex]\mu[/tex] =  [tex][Xbar - 1.6449*\frac{\sigma}{\sqrt{n} } , Xbar + 1.6449*\frac{\sigma}{\sqrt{n} }][/tex]

                                                        = [tex][258.8 - 1.6449*\frac{16}{\sqrt{10} } , 258.8 + 1.6449*\frac{16}{\sqrt{10} }][/tex]

                                                        = [250.48 , 267.12]

Since, 266 lies inside this interval so we conclude that the mean gestation period for all of Dr. Smith's patients is 266 days.

And this interval states that we have 90% confidence in the above statement.