Answer:
[tex]f(x_1)=2\sqrt{118}\\f(x_2)=-2\sqrt{118}[/tex]
Step-by-step explanation:
[tex]f(x)=13x^3-x^2-3x+10[/tex]
Differentiate with respect to [tex]x[/tex]
[tex]f'(x)=39x^2-2x-3[/tex]
For equation of the form [tex]ax^2+bx+c=0[/tex], solutions are given by [tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
To find: critical points
[tex]39x^2-2x-3=0[/tex]
[tex]x=\frac{2\pm \sqrt{4+468}}{78}\\=\frac{2\pm \sqrt{472}}{78}\\=\frac{2\pm 2\sqrt{118}}{78}\\=\frac{1\pm \sqrt{118}}{39}[/tex]
Let [tex]x_1=\frac{1+\sqrt{118}}{39}\,,\,x_2=\frac{1- \sqrt{118}}{39}[/tex]
Differentiate [tex]f'(x)[/tex] again with respect to [tex]x[/tex]
[tex]f''(x)=78x-2[/tex]
[tex]f(x_1)=f\left (\frac{1+\sqrt{118}}{39} \right )\\=78\left ( \frac{1+\sqrt{118}}{39} \right )-2\\=2\left ( 1+\sqrt{118} \right )-2\\=2\sqrt{118}\\f(x_2)=f\left (\frac{1-\sqrt{118}}{39} \right )\\=78\left ( \frac{1-\sqrt{118}}{39} \right )-2\\=2\left ( 1-\sqrt{118} \right )-2\\=-2\sqrt{118}[/tex]