Answer:
[tex] Range= Max-Min= 10.2-8.7=1.5 inches[/tex]
[tex] s =\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}[/tex]
And if we replace we got [tex] s = 0.50 inches[/tex]
[tex] s^2 = 0.503^2 = 0.25 in^2[/tex]
D. The statistics are representative because they are taken from a random sample
Step-by-step explanation:
For this case we have the following data:
9.9 8.7 10.1 9.2 9.2 9.9 10.1 9.4 9.1 9.3 10.2
The data was colledted from a random sample of people selected in 1988.
We can order the dataset on increasing way and we got:
8.7 9.1 9.2 9.2 9.3 9.4 9.9 9.9 10.1 10.1 10.2
The range is defined as [tex] Range= Max-Min= 10.2-8.7=1.5 inches[/tex]
The mean is defined as:
[tex]\bar X =\frac{\sum_{i=1}^n X_i}{n}= 9.555 inches[/tex]
The standard deviation can be calculated with the following formula:
[tex] s =\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}[/tex]
And if we replace we got [tex] s = 0.50 inches[/tex]
The sample variance would be just the deviation squared:
[tex] s^2 = 0.503^2 = 0.25 in^2[/tex]
And since the data comes from a random sample then is representative fo the population data in 1988. So then the best answer for this case would be:
D. The statistics are representative because they are taken from a random sample