Answer: 2000 v/m, from B to A.
Explanation: if point A is at the origin (x=0m) and point B is at the point x= 0.150m, the distance between both points (d) = 0.150 - 0 = 0.150m
Point A is at a 200v potential and point B is at a potential of 500v.
Difference in potential produces a voltage (v) = 500 - 200 = 300v.
The relationship between voltage, electric field intensity and distance is given by the formulae below
v=Ed
Where v = voltage = 300v, electric field =?, d = 0.150m
300 = E×0.150
E = 300/0.150
E = 2000 v/m.
Since point B is at higher potential than A, it implies that if there is an electron in this field, it will move from B to A thus making the direction of field be from B to A.