Respuesta :
Answer: To calculate the pH of the buffer composed of [tex]H_2PO_4^-\text{ and }HPO_4^{-2}[/tex], we use the [tex]K_a2[/tex]
Explanation:
Phosphoric acid is a triprotic acid and it will undergo three dissociation reaction each having their respective dissociation constants.
The chemical equation for the first dissociation reaction follows:
[tex]H_3PO_4\rightleftharpoons H_2PO_4^-+H^+;K_a1=6.9\times 10^{-3}[/tex]
The chemical equation for the second dissociation reaction follows:
[tex]H_2PO_4^-\rightleftharpoons HPO_4^{2-}+H^+;K_a2=6.2\times 10^{-8}[/tex]
The chemical equation for the third dissociation reaction follows:
[tex]HPO_4^{2-}\rightleftharpoons PO_4^{3-}+H^+;K_a3=4.8\times 10^{-13}[/tex]
To form a buffer composed of [tex]H_2PO_4^-\text{ and }HPO_4^{-2}[/tex], we use the [tex]K_a[/tex] of second dissociation process
To calculate the [tex]pK_a[/tex], we use the equation:
[tex]pK_a=-\log (K_a)\\\\pK_a=-\log(6.2\times 10^{-8})\\\\pK_a=7.21[/tex]
To calculate the pH of buffer, we use the equation given by Henderson Hasselbalch:
[tex]pH=pK_a2+\log(\frac{[\text{conjugate base}]}{[\text{weak acid}]})[/tex]
[tex]pH=pK_a2+\log(\frac{[HPO_4^{2-}]}{[H_2PO_4^-]})[/tex]
We are given:
[tex]pK_a2[/tex] = negative logarithm of second acid dissociation constant of phosphoric acid = 7.21
[tex][HPO_4^{2-}][/tex] = concentration of conjugate base
[tex][H_2PO_4^{-}][/tex] = concentration of weak acid
Hence, to calculate the pH of the buffer composed of [tex]H_2PO_4^-\text{ and }HPO_4^{-2}[/tex], we use the [tex]K_a2[/tex]