Phosphoric acid is a triprotic acid ( K a1 = 6.9 × 10 − 3 Ka1=6.9×10−3, K a2 = 6.2 × 10 − 8 Ka2=6.2×10−8, and K a3 = 4.8 × 10 − 13 Ka3=4.8×10−13). To find the pH of a buffer composed of H 2 PO − 4 ( aq ) H2PO4−(aq) and HPO 2 − 4 ( aq ) HPO42−(aq) , which p K a Ka value should be used in the Henderson–Hasselbalch equation?

Respuesta :

Answer: To calculate the pH of the buffer composed of [tex]H_2PO_4^-\text{ and }HPO_4^{-2}[/tex], we use the [tex]K_a2[/tex]

Explanation:

Phosphoric acid is a triprotic acid and it will undergo three dissociation reaction each having their respective dissociation constants.

The chemical equation for the first dissociation reaction follows:

[tex]H_3PO_4\rightleftharpoons H_2PO_4^-+H^+;K_a1=6.9\times 10^{-3}[/tex]

The chemical equation for the second dissociation reaction follows:

[tex]H_2PO_4^-\rightleftharpoons HPO_4^{2-}+H^+;K_a2=6.2\times 10^{-8}[/tex]

The chemical equation for the third dissociation reaction follows:

[tex]HPO_4^{2-}\rightleftharpoons PO_4^{3-}+H^+;K_a3=4.8\times 10^{-13}[/tex]

To form a buffer composed of [tex]H_2PO_4^-\text{ and }HPO_4^{-2}[/tex], we use the [tex]K_a[/tex] of second dissociation process

To calculate the [tex]pK_a[/tex], we use the equation:

[tex]pK_a=-\log (K_a)\\\\pK_a=-\log(6.2\times 10^{-8})\\\\pK_a=7.21[/tex]

To calculate the pH of buffer, we use the equation given by Henderson Hasselbalch:

[tex]pH=pK_a2+\log(\frac{[\text{conjugate base}]}{[\text{weak acid}]})[/tex]

[tex]pH=pK_a2+\log(\frac{[HPO_4^{2-}]}{[H_2PO_4^-]})[/tex]

We are given:

[tex]pK_a2[/tex] = negative logarithm of second acid dissociation constant of phosphoric acid = 7.21

[tex][HPO_4^{2-}][/tex] = concentration of conjugate base

[tex][H_2PO_4^{-}][/tex] = concentration of weak acid

Hence, to calculate the pH of the buffer composed of [tex]H_2PO_4^-\text{ and }HPO_4^{-2}[/tex], we use the [tex]K_a2[/tex]

ACCESS MORE