Answer:
x = -93.2meters
Step-by-step explanation:
[tex]v^{2}=v_{0} ^{2} + 2ax[/tex]
Make x the subject of the formula;
[tex]v^{2}-v_{0} ^{2}=2ax[/tex]
Divide both sides by 2a
[tex]\frac{v^{2}-v_{0} ^{2}}{2a}=\frac{2ax}{2a} \\\\\frac{v^{2}-v_{0} ^{2}}{2a}=x\\\\x = \frac{v^{2}-v_{0} ^{2}}{2a}[/tex]
Subsituting the values for v, v0, and a, we have
[tex]x=\frac{0^{2}-(21.8)^{2}}{2*2.55}\\ \\x= \frac{0-475.24}{5.1}=\frac{-475.24}{5.1}\\ \\x = -93.1843\\[/tex]
x ≅ -93.2meters