Respuesta :
Answer:
59°
Step-by-step explanation:
For the triangle XYZ the sine theorem states that
[tex]\dfrac{XZ}{\sin Y}=\dfrac{XY}{\sin Z}[/tex]
Since
[tex]m\angle Z=63^{\circ}\\ \\XY=2.8\\ \\XZ=2.7,[/tex]
you have
[tex]\dfrac{2.7}{\sin Y}=\dfrac{2.8}{\sin 63^{\circ}}\\ \\2.8\sin Y=2.7\sin 63^{\circ}\\ \\\sin Y=\dfrac{2.7\sin 63^{\circ}}{2.8}\\ \\\sin Y\approx 0.86\\ \\m\angle Y\approx 59^{\circ}[/tex]
![Ver imagen frika](https://us-static.z-dn.net/files/dd8/6d7d3c8b951a883718781a40fb200569.bmp)
The approximate measure of angle Y is 59° ⇒ 2nd answer
Step-by-step explanation:
The formula of the sine law of a triangle is [tex]\frac{sin(A)}{a}=\frac{sin(B)}{b}=\frac{sin(C)}{c}[/tex] , where
- a is the side opposite the angle A
- b is the side opposite to angle B
- c is the side opposite to angle C
In Δ XYZ
∵ The side YZ is opposite to ∠X
∵ The side XZ is opposite to ∠Y
∵ The side XY is opposite to ∠Z
- Write the sine formula
∴ [tex]\frac{sin(X)}{YZ}=\frac{sin(Y)}{XZ}=\frac{sin(Z)}{XY}[/tex]
∵ m∠XZY 63°
∵ The length of XZ = 2.7 units
∵ The length of XY = 2.8
- Substitute them in the sine formula
∴ [tex]\frac{sin(63)}{2.8}=\frac{sin(Y)}{2.7}[/tex]
- By using cross multiplication
∴ 2.8 × sin(Y) = 2.7 × sin(63)
- Divide both sides by 2.8
∴ sin(Y) = 0.85918486
- Use the inverse of sine ([tex]sin^{-1}[/tex]) to find y
∴ m∠Y = [tex]sin^{-1}(0.85918486)[/tex]
∴ m∠Y ≅ 59°
The approximate measure of angle Y is 59°