Answer:
The coordinates of the point that partitions the directed line segment PT in a 3:2 ratio will be (5, 11).
Step-by-step explanation:
Given the points
What are the coordinates of the point that partitions the directed line segment PT in a 3:2 ratio?
Let D be the Divided point of the directed line segment PT.
SECTION FORMULA
The point (x, y) which partitions the line segment of the points (x₁, y₁) and
(x₂, y₂) in a ratio [tex]m:n[/tex] will be:
[tex]\left(\frac{m\:x_2+n\:x_1}{m+n},\:\frac{m\:y_2+n\:y_1}{m+n}\right)[/tex]
Here,
Substituting the values in the above formula
[tex]D\left(x\right)=\left(\frac{3\times \:7\:+\:2\times 2}{3+2},\:\frac{3\times 17\:+\:2\times 2}{3+2}\right)[/tex]
[tex]D\left(x\right)=\left(\frac{21\:+\:4}{5},\:\frac{51\:+\:4}{5}\right)[/tex]
[tex]D\left(x\right)=\left(\frac{25}{5},\:\frac{55}{5}\right)[/tex]
As
[tex]\frac{25}{5}=5,\:\frac{55}{5}=11[/tex]
So
[tex]$D(x)=(5, 11)[/tex]
Therefore, the coordinates of the point that partitions the directed line segment PT in a 3:2 ratio will be (5, 11).