Respuesta :

The area of the composite figure is [tex]40 in^2[/tex]

Explanation:

From the given figure, we can see that the area of the composite figure = area of the rectangle + area of the triangle.

Area of the rectangle [tex](A_1)[/tex]:

The formula is given by

[tex]A_1=length\times width[/tex]

where [tex]length = 5[/tex] and [tex]width = 5[/tex]

Substituting, we have,

[tex]A_1=7\times 5=35 in^{2}[/tex]

Thus, the area of the rectangle = [tex]35 i n^{2}[/tex]

Area of the triangle [tex](A_2)[/tex]:

The formula is given by

[tex]A_2=\frac{1}{2} bh[/tex]

where [tex]b=5-3=2 i n[/tex]

and [tex]h=12-7=5 \text { in }[/tex]

Substituting, we have,

[tex]A_2=\frac{1}{2} (2)(5)\\A_2=5 in ^{2}[/tex]

Thus, the area of the triangle = [tex]5in ^{2}[/tex]

Area of the composite figure = Area of the rectangle + area of the triangle

Area of the composite figure = [tex]35 i n^{2}+5 i n^{2}=40 i n^{2}[/tex]

Thus, the area of the composite figure is [tex]40 in^2[/tex]

RELAXING NOICE
Relax