Option b: [tex](14+8.125 \pi) \text { units }^{2}[/tex] is the area of the figure.
Explanation:
The area of the figure is equal to the area of the triangle plus area of the semicircle.
Area of the triangle:
The formula for area of the triangle is given by
[tex]A=\frac{1}{2} bh[/tex]
where [tex]b=(3-(-4))=7 \text { units }[/tex]
and [tex]h=(2-(-2))=4 \text { units }[/tex]
Substituting the values, we have,
[tex]A=\frac{1}{2}(7\times4)=14units^2[/tex]
Thus, the area of the triangle is [tex]14 u n i t s^{2}[/tex]
Area of the semicircle:
The formula for area of the semicircle is given by
[tex]A=\frac{1}{2} \pi r^{2}[/tex]
We shall determine the radius using the coordinates [tex](-4,-2)[/tex] and [tex](3,2)[/tex]
Substituting these coordinates in the equation [tex]d=\sqrt{(y_2-y_1)^{2}+(x_2-x_1)^{2}}[/tex] , we get,
[tex]d=\sqrt{(2+2)^{2}+(3+4)^{2}}[/tex]
[tex]d=\sqrt{(4)^{2}+(7)^{2}}[/tex]
[tex]d=\sqrt{65} \text { units }[/tex]
where d is the diameter.
The radius r is given by [tex]r=\left\frac{\sqrt{65} }{2}\right\text { units }[/tex]
Substituting the value of r in the formula [tex]A=\frac{1}{2} \pi r^{2}[/tex], we get,
[tex]A=\frac{1}{2} \pi\left\left(\frac{\sqrt{65}}{2}\right) ^{2}[/tex]
[tex]A=\frac{65}{8} \pi \text { units }^{2}[/tex]
[tex]A=8.125 \pi \text { units }^{2}[/tex]
Thus, the area of the semicircle is [tex]8.125 \pi$ units $^{2}$[/tex]
Area of the figure = Area of the triangle + Area of semicircle
Area of the figure = [tex]14 units $^{2}+8.125 \pi$ units $^{2}$=($14+8.125 \pi$ )units $^{2}$[/tex]
Thus, the area of the figure is [tex](14+8.125 \pi) \text { units }^{2}[/tex]
Hence, Option b is the correct answer.