The curved part of this figures is a semicircle.

What is the best approximation for the area of this figure?


a) 28+16.25π units²

b) 14+8.125π units²

c) 28+8.125π units²

d) 14+16.25π units²

The curved part of this figures is a semicircle What is the best approximation for the area of this figure a 281625π units b 148125π units c 288125π units d 141 class=

Respuesta :

Option b: [tex](14+8.125 \pi) \text { units }^{2}[/tex] is the area of the figure.

Explanation:

The area of the figure is equal to the area of the triangle plus area of the semicircle.

Area of the triangle:

The formula for area of the triangle is given by

[tex]A=\frac{1}{2} bh[/tex]

where [tex]b=(3-(-4))=7 \text { units }[/tex]

and [tex]h=(2-(-2))=4 \text { units }[/tex]

Substituting the values, we have,

[tex]A=\frac{1}{2}(7\times4)=14units^2[/tex]

Thus, the area of the triangle is [tex]14 u n i t s^{2}[/tex]

Area of the semicircle:

The formula for area of the semicircle is given by

[tex]A=\frac{1}{2} \pi r^{2}[/tex]

We shall determine the radius using the coordinates [tex](-4,-2)[/tex] and [tex](3,2)[/tex]

Substituting these coordinates in the equation [tex]d=\sqrt{(y_2-y_1)^{2}+(x_2-x_1)^{2}}[/tex] , we get,

[tex]d=\sqrt{(2+2)^{2}+(3+4)^{2}}[/tex]

[tex]d=\sqrt{(4)^{2}+(7)^{2}}[/tex]

[tex]d=\sqrt{65} \text { units }[/tex]

where d is the diameter.

The radius r is given by [tex]r=\left\frac{\sqrt{65} }{2}\right\text { units }[/tex]

Substituting the value of r in the formula [tex]A=\frac{1}{2} \pi r^{2}[/tex], we get,

[tex]A=\frac{1}{2} \pi\left\left(\frac{\sqrt{65}}{2}\right) ^{2}[/tex]

[tex]A=\frac{65}{8} \pi \text { units }^{2}[/tex]

[tex]A=8.125 \pi \text { units }^{2}[/tex]

Thus, the area of the semicircle is [tex]8.125 \pi$ units $^{2}$[/tex]

Area of the figure = Area of the triangle + Area of semicircle

Area of the figure = [tex]14 units $^{2}+8.125 \pi$ units $^{2}$=($14+8.125 \pi$ )units $^{2}$[/tex]

Thus, the area of the figure is [tex](14+8.125 \pi) \text { units }^{2}[/tex]

Hence, Option b is the correct answer.

ACCESS MORE