Answer:
53.73 factor
Explanation:
Given that:
The activation energy ([tex]E_a[/tex]) = 274 kJ/mol.
T₁ = 255°C = (255+273) = 528 K
T₂ = 291° C = (291 + 273) = 564 K
Rate Constant (R) = 8.314 × 10⁻³ kJ k⁻¹ mol⁻¹
We are tasked to determine the factor at which the rate of the reaction increase as the temperature rises from 255°C to 291° C; In order to do that;
We can apply the use of Arrhenius Equation, which is given by:
㏑ [tex](\frac{K_2}{K_1})[/tex] = [tex]\frac{E_a}{R} [\frac{1}{T_1}-\frac{1}{T_2}][/tex]
㏑ [tex](\frac{K_2}{K_1})[/tex] = [tex]\frac{273kJ/mol}{8.314*10^{-3}kJK^{-1}} [\frac{1}{528}-\frac{1}{564}][/tex]
㏑ [tex](\frac{K_2}{K_1})[/tex] = [tex]\frac{273kJ/mol}{8.314*10^{-3}kJK^{-1}} [\frac{36k}{(528K)(564K)}][/tex]
㏑ [tex](\frac{K_2}{K_1})[/tex] = 3.984
[tex](\frac{K_2}{K_1})[/tex] = [tex]e^{3.984[/tex]
[tex](\frac{K_2}{K_1})[/tex] = 53.73
K₂ = 53.73 K₁
∴ As the temperature rises from 255°C to 291° C, the rate of reaction increases by 53.73 factor