Respuesta :

Answer:

|x-4|=8

Two solutions were found :

x=12

x=-4

Absolute Value Equation entered :

|x-4|=8

Step by step solution :

Step 1 :

Rearrange this Absolute Value Equation

Absolute value equality entered

|x-4| = 8

Step 2 :

Clear the Absolute Value Bars

Clear the absolute-value bars by splitting the equation into its two cases, one for the Positive case and the other for the Negative case.

The Absolute Value term is |x-4|

For the Negative case we'll use -(x-4)

For the Positive case we'll use (x-4)

Step 3 :

Solve the Negative Case

-(x-4) = 8

Multiply

-x+4 = 8

Rearrange and Add up

-x = 4

Multiply both sides by (-1)

x = -4

Which is the solution for the Negative Case

Step 4 :

Solve the Positive Case

(x-4) = 8

Rearrange and Add up

x = 12

Which is the solution for the Positive Case

Step 5 :

Wrap up the solution

x=-4

x=12