Answer:
5091 Km/hr and 505 km/hr
Step-by-step explanation:
Speed = Distance / Time
Let the speed of first automobile be 'x' and that of the second be 'y'
Since speed of one is 10 times greater than the other. therefore;
⇒ x = 10 y
also let time for faster automobile be 'T' and time for slower auto mobile be 't'
Since first arrive one hour earlier than second, therefore;
⇒ t = T + 1
⇒ For first automobile; [tex]x X T = 560[/tex] ; substituting for 'x' and 'T'. Therefore;
⇒ [tex]10y (t+1) = 560[/tex]
⇒ For Second automobile; [tex]y X t = 560[/tex]
⇒ [tex]y = \frac{560}{t}[/tex]
⇒ [tex]10(\frac{560}{t})(t + 1) = 560[/tex]
⇒ 5600 + [tex]\frac{5600}{t}[/tex] = 560
⇒ 5600 - 560 = - [tex]\frac{5600}{t}[/tex]
⇒ t = 1.11 hr
also ; T = 1.11 - 1 = 0.11 hr
Speed of 1st auto = 560/0.11 = 5091 km /hr
Speed of 2nd auto = 560/1.11 = 505 km/hr