Answer:
[tex]L=\sqrt{x^{2}+100}+\sqrt{x^{2}-34x+433} ft[/tex]
Step-by-step explanation:
let length of calble = L
distance from 10-foot pole = x ft
Moving from the top of the 10-foot pole to point x, we have
From the diagram that
[tex]x^{2} +10^{2}=L_{1} ^{2} \\x^{2} + 100 = L_{1} ^{2}[/tex]
Take the square root of both sides
[tex]\sqrt{x^{2}+100}=\sqrt{L_{1} ^{2}}\\ \sqrt{x^{2}+100}= L_{1}[/tex]
Moving from point x to the top of the 12-foot pole, we have
From the diagram that
[tex](17-x)^{2}+12^{2}=L_{2} ^{2} \\289-34x+x^{2} +144=L_{2} ^{2}\\x^{2} -34x+433=L_{2} ^{2}[/tex]
Take the square root of both sides
[tex]\sqrt{x^{2}-34x+433}=\sqrt{L_{2} ^{2}} \\\sqrt{x^{2}-34x+433}=L_{2}[/tex]
Amount of cable used, L = L1 + L2
[tex]L=\sqrt{x^{2}+100}+\sqrt{x^{2}-34x+433}[/tex]