Answer:
[tex]s=78.7352\ m[/tex]
Explanation:
Given:
Now the kinetic frictional force:
[tex]f=\mu.N[/tex]
where:
N= normal force of reaction by the ground on the car, which is equal to the weight of the car
[tex]f=0.5\times (1000\times 9.8)[/tex]
[tex]f=4900\ N[/tex]
Therefore the acceleration of the car due to frictional force:
[tex]a=\frac{f}{m}[/tex]
[tex]a=\frac{4900}{1000}[/tex]
[tex]a=-4.9\ m.s^{-1}[/tex]
Now the stopping distance:
[tex]v^2=u^2+2a.s[/tex]
[tex]0^2=27.78^2+2\times (-4.9)\times s[/tex]
[tex]s=78.7352\ m[/tex]