A 2.0 cm diameter faucet tap fills a 2.5 x 10-2 m3 container in 30.0 s. What is the speed at which the water leaves the faucet?

Respuesta :

Answer:

                      Speed of Water  =  2.652 ms⁻¹

Explanation:

Step 1: Calculate the Radius of the Faucet:

                       Radius  =  Diameter / 2

                       Radius  =  2 cm / 2

                       Radius =  1 cm or 0.01 m

Step 2: Calculate Cross-Section Area of Faucet:

                       Area  =  π r²

                       Area  =  π (0.01 m)²

Step 3: Calculate the Flow Rate (Q) as;

                       Q  =  2.5 × 10⁻² m³ / 30 s

                       Q  =  8.33 × 10⁻⁴ m³/s

Step 4: Calculate Speed of water as;

                       Speed of Water  =  Flow Rate / Cross-Section Area

Putting values,

                       Speed of Water  =  8.33 × 10⁻⁴ m³/s / π (0.01 m)²

                       Speed of Water  =  8.33 × 10⁻⁴ m³/s / 3.14 × 0.0001 m²

                       Speed of Water  =  8.33 × 10⁻⁴ m/s / 0.000314

                        Speed of Water  =  2.652 ms⁻¹

The speed of the water will be "2.652 ms⁻¹".

Given values:

  • Diameter, d = 2.0 cm
  • Time, t = 30.0 s
  • Volume, V = [tex]2.5\times 10^{-2} \ m^3[/tex]

The radius of Faucet will be:

→ [tex]Radius = \frac{Diameter}{2}[/tex]

               [tex]= \frac{2}{2}[/tex]

               [tex]= 1 \ cm \ or \ 0.01 \ m[/tex]

The Cross-section area of Faucet will be:

→ [tex]Area = \pi r^2[/tex]

           [tex]= \pi (0.01)^2[/tex]

The flow rate will be:

→ [tex]Q = \frac{2.5\times 10^{-2}}{30}[/tex]

       [tex]= 8.33\times 10^{-4} \ m^3/s[/tex]

hence,

The speed of water will be:

= [tex]\frac{Flow \ rate}{Cross-section \ area}[/tex]

= [tex]\frac{8.33\times 10^{-4}}{\pi (0.01)^2}[/tex]

= [tex]\frac{8.33\times 10^{-4}}{0.000314}[/tex]

= [tex]2.652 \ ms^{-1}[/tex]

Thus the above approach is right.  

Learn more about diameter here:

https://brainly.com/question/13998917

ACCESS MORE