The angle of B is [tex]\angle B=19^{\circ}[/tex]
Explanation:
It is given that [tex]\angle A=120^{\circ}[/tex] and [tex]a=8, b=3[/tex]
To determine the [tex]\angle B[/tex], let us use the law of sine formula.
Thus, we have,
[tex]\frac{Sin A}{a} =\frac{Sin B}{b}[/tex]
Substituting the values in the formula, we have,
[tex]\frac{Sin 120}{8} =\frac{Sin B}{3}[/tex]
Multiplying both sides by 3,we get,
[tex]\frac{3(0.866)}{8} ={Sin B}[/tex]
Simplifying and dividing, we get,
[tex]0.32475=Sin B[/tex]
Multiplying both sides by [tex]\sin ^{-1}[/tex], we get,
[tex]\sin ^{-1}(0.32475)=B[/tex]
Thus, [tex]B=18.95^{\circ}=19^{\circ}[/tex]
Hence, The angle of B is [tex]\angle B=19^{\circ}[/tex]