Respuesta :

The angle of B is [tex]\angle B=19^{\circ}[/tex]

Explanation:

It is given that [tex]\angle A=120^{\circ}[/tex] and [tex]a=8, b=3[/tex]

To determine the [tex]\angle B[/tex], let us use the law of sine formula.

Thus, we have,

[tex]\frac{Sin A}{a} =\frac{Sin B}{b}[/tex]

Substituting the values in the formula, we have,

[tex]\frac{Sin 120}{8} =\frac{Sin B}{3}[/tex]

Multiplying both sides by 3,we get,

[tex]\frac{3(0.866)}{8} ={Sin B}[/tex]

Simplifying and dividing, we get,

[tex]0.32475=Sin B[/tex]

Multiplying both sides by [tex]\sin ^{-1}[/tex], we get,

[tex]\sin ^{-1}(0.32475)=B[/tex]

Thus, [tex]B=18.95^{\circ}=19^{\circ}[/tex]

Hence, The angle of B is [tex]\angle B=19^{\circ}[/tex]

ACCESS MORE