Answer:
[tex]E_{net}_M=\sqrt{5259150^2+(-2724948.933)^2}\\ E_{net}_M=5923175.281 V/m[/tex]
The electric field magnitude created by these two charges=5923175.281 V/m
Explanation:
The formula for Electric field is:
[tex]E=\frac{kQ}{r^2}[/tex]
where:
k is coulomb constant=[tex]8.99*10^{9} Nm^2/C^2[/tex]
r is the distance
Q is the charge.
It is a equilateral triangle with all angles 60 degree.
For 3.5μC charge, Magnitude of Electric Field:
[tex]E_1=\frac{8.99*10^{9}*3.5*10^{-6}}{0.1^2} \\E_1=3146500 V/m[/tex]
For -7.6 μC charge, Magnitude of Electric Field:
[tex]E_2=\frac{8.99*10^{9}*7.6*10^{-6}}{0.1^2} \\E_2=6832400V/m[/tex]
Electric field at third corner:
Diagram is attached (According to the diagram)
[tex]E_{net}=(E_2-E_1cos 60)\hat i-E_1sin60\hat j\\E_{net}=(6832400-3146500cos60)\hat i-3146500sin60\hat j\\E_{net}=5259150\hat i-2724948.933\hat j[/tex]
Magnitude is given by:
[tex]E_{net}_M=\sqrt{5259150^2+(-2724948.933)^2}\\ E_{net}_M=5923175.281 V/m[/tex]
The electric field magnitude created by these two charges=5923175.281 V/m