Answer:
[tex]\Delta h=0.0364\ m=3.64\ cm[/tex]
Explanation:
Given:
So, weight of the car:
[tex]w=m.g[/tex]
[tex]w=1455\times 9.81[/tex]
[tex]w=14273.55\ N[/tex]
Now the spring constant of original spring:
[tex]w=4k_o.(l_i-l_f)[/tex] (since 4 springs are in parallel)
[tex]14273.55=4k_o\times (0.12-0.0855)[/tex]
[tex]k_o=103431.522\ N.m^{-1}[/tex]
So the stiffness constant of the new springs:
[tex]k_n=k_o-\delta k[/tex]
[tex]k_n=103431.522-5355[/tex]
[tex]k_n=98076.522\ N.m^{-1}[/tex]
Now the height lowered:
[tex]w=k_n.4\Delta h[/tex] (since 4 springs are in parallel)
[tex]14273.55=4\times98076.522\times \Delta h[/tex]
[tex]\Delta h=0.0364\ m=3.64\ cm[/tex]