Answer:
the amount of water that is left in the tank after 10 min is 98 L
Step-by-step explanation:
since the water drains off at rate that is proportional to the water present
(-dV/dt) = k*V , where k= constant
(-dV/V) = k*dt
-∫dV/V) = k*∫dt
-ln V/V₀=k*t
or
V= V₀*e^(-k*t) , where V₀= initial volume
then since V₁=0.7*V₀ at t₁= 3 min
-ln V₁/V₀=k*t₁
then for t₂= 10 min we have
-ln V₂/V₀=k*t₂
dividing both equations
ln (V₂/V₀) / ln (V₁/V₀) =(t₂/t₁)
V₂/V₀ = (V₁/V₀)^(t₂/t₁)
V₂=V₀ * (V₁/V₀)^(t₂/t₁)
replacing values
V₂=V₀ * (V₁/V₀)^(t₂/t₁) = 200 L * (0.7)^(10min/5min) = 98 L
then the amount of water that is left in the tank after 10 min is 98 L