Answer:
[tex]1.36\times 10^{-7} C[/tex]
Explanation:
We are given that
Mass of charged tine spheres=m=1 g=[tex]\frac{1}{1000}=0.001 kg[/tex]
1 kg=1000g
The distance between charged tine spheres=r=2 cm=[tex]\frac{2}{100}=0.02 m[/tex]
1 m=100 cm
Acceleration =[tex]a =414 m/s^2[/tex]
Let q be the charge on each sphere.
[tex]k=9\times 10^9Nm^2/C^2[/tex]
The electric force between two charged particle
[tex]F=\frac{kq_1q_2}{r^2}[/tex]
Using the formula
The force between two charged tiny spheres=[tex]F_e=\frac{kq^2}{(0.02)^2}[/tex]
According to Newton's second law , the net force
[tex]F=ma[/tex]
[tex]F=F_e[/tex]
[tex]0.001\times 414=\frac{9\times 10^9\times q^2}{(0.02)^2}[/tex]
[tex]q^2=\frac{0.001\times 414\times (0.02)^2}{9\times 10^9}[/tex]
[tex]q=\sqrt{\frac{0.001\times 414\times (0.02)^2}{9\times 10^9}}[/tex]
[tex]q=1.36\times 10^{-7} C[/tex]
Hence, the magnitude of charge on each tiny sphere=[tex]1.36\times 10^{-7} C[/tex]