Respuesta :
Answer:
[tex]v=369.27\frac{m}{s}[/tex]
Explanation:
The speed of the waves in a string is related with the tension and mass per unit length of the string, as follows:
[tex]v=\sqrt\frac{T}{\mu}[/tex]
First, we calculate the mass per unit length:
[tex]\mu=\frac{m}{L}\\\mu=\frac{55*10^{-3}kg}{100m}\\\mu=5.5*10^{-4}\frac{kg}{m}[/tex]
Now, we calculate the speed of the waves:
[tex]v=\sqrt\frac{75N}{5.5*10^{-4}\frac{kg}{m}}\\v=369.27\frac{m}{s}[/tex]
The speed of the waves will be "369.27 m/s".
Given values,
- Mass, [tex]m = 55 \ g[/tex]
or, [tex]= 55\times 10^{-3} \ kg[/tex]
- Length, [tex]L = 100 \ m[/tex]
As we know,
→ [tex]v = \sqrt{\frac{T}{\mu} }[/tex]
or,
→ [tex]\mu = \frac{m}{L}[/tex]
By putting the values,
[tex]= \frac{55\times 10^{-3}}{100}[/tex]
[tex]= 5.5\times 10^{-4} \ kg/m[/tex]
hence,
The speed of wave:
→ [tex]v = \sqrt{\frac{75}{5.5\times 10^{-4}} }[/tex]
[tex]= 369.27 \ m/s[/tex]
Thus the above response is correct.
Learn more about speed here:
https://brainly.com/question/22669053