Answer:
[tex]Z = \frac{37i }{113 } - \frac{23}{113} [/tex]
Step-by-step explanation:
We have the complex number relationship as:
E=IZ
Where E=(5+9i) and I=(8+7i)
We solve for Z to get;
Z=E/L
We then substitute the expressions to get:
[tex]Z = \frac{5 + 9i}{8 + 7i} [/tex]
We rationalize to get:
[tex]Z = \frac{5 + 9i}{8 + 7i} \times \frac{8 - 7i}{8 - 7i} [/tex]
We simplify to obtain:
[tex]Z = \frac{40 - 35i + 72i - 63}{ {8}^{2} + {7}^{2} } [/tex]
This gives
[tex]Z = \frac{37i - 23}{113 } [/tex]
Or
[tex]Z = \frac{37i }{113 } - \frac{23}{113} [/tex]