Respuesta :

Answer:

[tex]Z = \frac{37i }{113 } - \frac{23}{113} [/tex]

Step-by-step explanation:

We have the complex number relationship as:

E=IZ

Where E=(5+9i) and I=(8+7i)

We solve for Z to get;

Z=E/L

We then substitute the expressions to get:

[tex]Z = \frac{5 + 9i}{8 + 7i} [/tex]

We rationalize to get:

[tex]Z = \frac{5 + 9i}{8 + 7i} \times \frac{8 - 7i}{8 - 7i} [/tex]

We simplify to obtain:

[tex]Z = \frac{40 - 35i + 72i - 63}{ {8}^{2} + {7}^{2} } [/tex]

This gives

[tex]Z = \frac{37i - 23}{113 } [/tex]

Or

[tex]Z = \frac{37i }{113 } - \frac{23}{113} [/tex]