Answer:
The electron’s velocity is 0.9999 c m/s.
Explanation:
Given that,
Rest mass energy of muon = 105.7 MeV
We know the rest mass of electron = 0.511 Mev
We need to calculate the value of γ
Using formula of energy
[tex]K_{rel}=(\gamma-1)mc^2[/tex]
[tex]\dfrac{K_{rel}}{mc^2}=\gamma-1[/tex]
Put the value into the formula
[tex]\gamma=\dfrac{105.7}{0.511}+1[/tex]
[tex]\gamma=208[/tex]
We need to calculate the electron’s velocity
Using formula of velocity
[tex]\gamma=\dfrac{1}{\sqrt{1-(\dfrac{v}{c})^2}}[/tex]
[tex]\gamma^2=\dfrac{1}{1-\dfrac{v^2}{c^2}}[/tex]
[tex]\gamma^2-\gamma^2\times\dfrac{v^2}{c^2}=1[/tex]
[tex]v^2=\dfrac{1-\gamma^2}{-\gamma^2}\times c^2[/tex]
Put the value into the formula
[tex]v^2=\dfrac{1-(208)^2}{-208^2}\times c^2[/tex]
[tex]v=c\sqrt{\dfrac{1-(208)^2}{-208^2}}[/tex]
[tex]v=0.9999 c\ m/s[/tex]
Hence, The electron’s velocity is 0.9999 c m/s.