Help me solve #15 please!!
Formulas if you need them:
RHOMBUS: A = 1/2 (d1)(d2)
![Help me solve 15 please Formulas if you need themRHOMBUS A 12 d1d2 class=](https://us-static.z-dn.net/files/d85/9bc8974f853e95bcc0b2fe69a2add6fa.jpg)
Area of the given rhombus = 498.83 ft²
Solution:
Given figure is a rhombus ABCD.
BE = 12 ft and ∠BAE = 30°
Property of rhombus:
Diagonals bisect each other at right angles.
In ΔAEB, ∠BAE = 30°, ∠AEB = 90° and BE = 12 ft
[tex]$\sin\theta=\frac{\text{Opposite}}{\text{Hypotenuse}}[/tex]
[tex]$\sin30^\circ=\frac{\text{BE}}{\text{AB}}[/tex]
[tex]$\frac{1}{2} =\frac{\text{12}}{\text{AB}}[/tex]
Do cross multiplication, we get
AB = 24 ft
Using Pythagoras theorem,
[tex]\text {Adjacent}^{2}+\text{Opposite}^{2}=\text{ Hypotenuse }^{2}[/tex]
[tex]AE^2+BE^2=AB^2[/tex]
[tex]AE^2+12^2=24^2[/tex]
[tex]AE^2+144=576[/tex]
[tex]AE^2=432[/tex]
Taking square root on both sides, we get
[tex]AE=12\sqrt{3}[/tex] ft
AC = [tex]2\times 12\sqrt{3}=24\sqrt {3}[/tex]
Area of the rhombus = [tex]\frac{1}{2}\times d_1 \times d_2[/tex]
[tex]$=\frac{1}{2}\times 24 \times 24\sqrt3[/tex]
[tex]=288\sqrt{3}[/tex]
= 498.83 ft²
Area of the given rhombus = 498.83 ft²