An engine draws energy from a hot reservoir with a temperature of 1250 K and exhausts energy into a cold reservoir with a temperature of 378 K. Over the course of one hour, the engine absorbs 1.42 × 10^5 J from the hot reservoir and exhausts 7.5 × 10^4 J into the cold reservoir.

a. What is the power output of this engine?
b. What is the maximum (Carnot) efficiency of a heat engine running between these two reservoirs?
c. What is the actual efficiency of this engine?

Respuesta :

Answer:

a. [tex]P=18.61\ W[/tex]

b. [tex]\eta_c=0.6976=69.76\%[/tex]

c. [tex]\eta=0.4718=47.18\%[/tex]

Explanation:

Given:

  • temperature of the hotter reservoir, [tex]T_H=1250\ K[/tex]
  • temperature of the colder reservoir, [tex]T_C=378\ K[/tex]
  • heat absorbed by the engine, [tex]Q_H=1.42\times 10^{5}\ J[/tex]
  • heat rejected to the cold reservoir, [tex]Q_L=7.5\times 10^4\ J[/tex]
  • time duration of the energy transfer, [tex]t=1\ hr=3600\ s[/tex]

Now the work done by the engine:

Using energy conservation,

[tex]W=Q_H-Q_L[/tex]

[tex]W=14.2\times 10^4-7.5\times 10^4[/tex]

[tex]W=6.7\times 10^4\ J[/tex]

a.

Hence the power output:

[tex]P=\frac{W}{t}[/tex]

[tex]P=\frac{6.7\times 10^4}{3600}[/tex]

[tex]P=18.61\ W[/tex]

b.

[tex]\eta_c=1-\frac{T_L}{T_H}[/tex]

[tex]\eta_c=1-\frac{378}{1250}[/tex]

[tex]\eta_c=0.6976=69.76\%[/tex]

c.

now actual efficiency:

[tex]\eta=\frac{W}{Q_H}[/tex]

[tex]\eta=\frac{6.7\times 10^4}{1.42\times 10^{5}}[/tex]

[tex]\eta=0.4718=47.18\%[/tex]

ACCESS MORE