Respuesta :
Answer:
0.0223
Step-by-step explanation:
Given the following data x(1) = 377, n(1) = 422, x(2) = 431, n(2) = 518
The sample proportion is the number of success divided by the sample.
P(1) = x(1)/n(1) = 377/422 = 0.8934
P(2) = x(2)/n(2) = 431/518 = 0.8320
Formular for the standard error of the difference in sample proportions
S.E = √p(1)q(1)/n(1)+P(2)q(2)/n(2)
S.E = √p1(1-P1)/n1+P2(1-P2)/n2
By substitution we have that,
S.E = √0.8934(1-0.8934)/422+0.8320(1-0.8320)/518
S.E = 0.0223
The standard error will be "0.0223".
Given values:
- [tex]x(1) = 377[/tex]
- [tex]x(2) = 431[/tex]
- [tex]n(1) = 422[/tex]
- [tex]n(2) = 518[/tex]
The sample proportion will be:
→ [tex]P(1) = \frac{x(1)}{n(1)}[/tex]
[tex]= \frac{377}{422}[/tex]
[tex]= 0.8934[/tex]
→ [tex]P(2) = \frac{x(2)}{n(2)}[/tex]
[tex]= \frac{431}{518}[/tex]
[tex]= 0.8320[/tex]
hence,
The standard error will be:
→ [tex]S.E = \sqrt{\frac{P(1)q(1)}{n(1)} +\frac{P(2)q(2)}{n(2)} }[/tex]
By substituting the values, we get
[tex]= \sqrt{\frac{P(1)(1-P(1))}{n(1)} +\frac{P(2)(1-P(2))}{n(2} }[/tex]
[tex]= \sqrt{\frac{0.8934(1-0.8934)}{422} +\frac{0.8320(1-0.8320)}{518} }[/tex]
[tex]= 0.0223[/tex]
Thus the solution above is right.
Learn more about probability here:
https://brainly.com/question/11234923