Answer: The mass of estrogen that must be added is 2.83 grams
Explanation:
The equation used to calculate relative lowering of vapor pressure follows:
[tex]\frac{p^o-p_s}{p^o}=i\times \chi_{solute}[/tex]
where,
[tex]\frac{p^o-p_s}{p^o}[/tex] = relative lowering in vapor pressure
i = Van't Hoff factor = 1 (for non electrolytes)
[tex]\chi_{solute}[/tex] = mole fraction of solute = ?
[tex]p^o[/tex] = vapor pressure of pure ethanol = 54.68 mmHg
[tex]p_s[/tex] = vapor pressure of solution = 54.11 mmHg
Putting values in above equation, we get:
[tex]\frac{54.68-54.11}{54.68}=1\times \chi_{\text{estrogen}}\\\\\chi_{\text{estrogen}}=0.0104[/tex]
This means that 0.0104 moles of estrogen are present in the solution
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Moles of estrogen = 0.0104 moles
Molar mass of estrogen = 272.4 g/mol
Putting values in above equation, we get:
[tex]0.0104mol=\frac{\text{Mass of estrogen}}{272.4g/mol}\\\\\text{Mass of estrogen}=(0.0104mol\times 272.4g/mol)=2.83g[/tex]
Hence, the mass of estrogen that must be added is 2.83 grams